Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Xiao-Fang Li, Ya-Qing Feng* and Yun-Feng Gu

School of Chemical Engineering and
Technology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail:
Ixf7212@yahoo.com.cn

## Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
$R$ factor $=0.052$
$w R$ factor $=0.110$
Data-to-parameter ratio $=13.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

## 3-(2,6-Dichlorophenyl)-8-ethyl-4-phenyl-1-oxa-6-thia-2,8-diazaspiro[4.4]non-2-ene-7,9-dione

In the title compound, $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$, which was synthesized by the intermolecular $[3+2]$-cycloaddition of $2,6-$ dichlorobenzonitrile oxide and 5-benzylidene-3-ethyl-thia-zolidine-2,4-dione, there is a spiro connection between an isoxazoline ring and a thiazolidine ring. The thiazolidine ring is essentially planar, but the isoxazoline ring has a mean deviation from the plane of 0.0177 (3) $\AA$. The dihedral angle between the mean planes of the rings is $88.5(4)^{\circ}$.

## Comment

Spiro compounds represent an important class of naturally occurring substances characterized by pronounced biological properties (Kobayashi et al., 1991; James et al., 1991). 1,3Dipolar cycloaddition reactions are important processes for the construction of spiro compounds (Caramella \& Grunanger, 1984). The structure of the title compound, (I), is reported here.

(I)

The molecular structure of (I) is illustrated in Fig. 1. A spiro-C atom is shared by an isoxazoline and a thiazolidine ring. The isoxazoline ring $(\mathrm{O} 3 / \mathrm{N} 2 / \mathrm{C} 5 / \mathrm{C} 4 / \mathrm{C} 3)$ is almost planar, with a mean deviation of 0.0177 (3) $\AA$. This is different from a previously reported structure, in which the isoxazoline ring is moderately puckered (Feng et al., 1997). The O3-N2, C5-N2 and $\mathrm{O} 3-\mathrm{C} 3$ bond lengths and $\mathrm{O} 3-\mathrm{N} 2-\mathrm{C} 5$ and $\mathrm{C} 3-\mathrm{O} 3-\mathrm{N} 2$ angles (Table 1) can be compared with respective values of 1.413 (2), 1.281 (3) and 1.472 (2) $\AA$, and 109.5 (2) and $108.6(1)^{\circ}$, in the structure of Feng et al. (1997). The dihedral angle between the isoxazoline ring mean plane and the substituted phenyl-ring plane ( $\mathrm{C} 14-\mathrm{C} 19$ ) is $65.9(4)^{\circ}$, and that between the isoxazoline ring mean plane and the unsubstituted phenyl-ring plane (C8-C13) is 93.6 (4) $\AA$. The thiazolidine ring ( $\mathrm{S} 1 / \mathrm{C} 1 / \mathrm{N} 1 / \mathrm{C} 2 / \mathrm{C} 3$ ) is essentially planar, with atoms O1 and O2 lying 0.0248 (2) and 0.0446 (2) $\AA$, respectively, from this mean plane. The $\mathrm{S} 1-\mathrm{C} 1$ and $\mathrm{S} 1-\mathrm{C} 3$ bond lengths (Table 1) are different from the values of 1.774 (2) and 1.741 (2) Å reported for a related compound (Bozdag-Dundar et al., 1999). The $\mathrm{O} 1-\mathrm{C} 1$ and $\mathrm{N} 1-\mathrm{C} 1$ bond lengths and $\mathrm{C} 1-$ $\mathrm{S} 1-\mathrm{C} 3, \mathrm{~S} 1-\mathrm{C} 1-\mathrm{N} 1$ and $\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1$ angles can be compared with the values of 1.207 (3) and 1.370 (3) $\AA$, and $91.77(10), 110.80(14)$ and $116.2(2)^{\circ}$, respectively, reported by

Received 27 January 2003
Accepted 6 February 2003
Online 21 February 2003


Figure 1
The molecular structure of (I), drawn with $30 \%$ probability ellipsoids. H atoms have been omitted.


Figure 2
The crystal structure of (I), viewed along the $a$ axis. Short intermolecular contacts are shown with dashed lines.

Bozdag-Dundar et al. (1999). The dihedral angle between the isoxazoline and thiazolidine rings is $88.5(4)^{\circ}$. The $\mathrm{Cl}-\mathrm{C}$ bond lengths in the substituted phenyl ring are in good agreement with values reported in the literature (Busetti et al., 1980; Sutherland \& Ali-Adib, 1987). There are short intermolecular contacts of 3.481 (2) $\AA$ for $\mathrm{Cl} 1 \cdots \mathrm{Cl} 2\left(\frac{1}{2}-x,-\frac{1}{2}+y, z\right)$ and its symmetry-equivalent $\mathrm{Cl} 2 \cdots \mathrm{Cl} 1\left(\frac{1}{2}-x, \frac{1}{2}+y, z\right)$, as shown in Fig. 2.

## Experimental

A mixture of 2,6-dichlorobenzonitrile oxide ( 4 mmol ) and 5-benzyl-idene-3-ethylthiazolidine-2,4-dione ( 2 mmol ) in dry chloroform $(30 \mathrm{ml})$ was heated under reflux for 4 d . After evaporation of the solvent, the residue was separated by column chromatography (silica gel, petroleum ether/ethyl acetate $=10: 1$ ) to give the title compound, (I). M.p. $432-433 \mathrm{~K}$; IR ( KBr ): $2920\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1763,1703(\mathrm{C}=\mathrm{O})$, 1602, $1580(\mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}$, p.p.m.): $1.27(3 \mathrm{H}$, $t), 3.76(2 \mathrm{H}, m), 6.09(1 \mathrm{H}, s), 7.16-7.38(8 \mathrm{H}, m)$. Compound (I) ( 20 mg ) was dissolved in 15 ml chloroform, and the solution was kept
at room temperature for 10 d , yielding colorless single crystals of (I) suitable for X-ray analysis by evaporation of the solvent.

## Crystal data

$\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$
$M_{r}=421.28$
Orthorhombic, $P b c a$
$a=10.0339$ (9) $\AA$ 。
$b=12.5618$ (12) $\AA$
$c=30.220(3) \AA$
$V=3809.1(7) \AA^{3}$
$Z=8$
$D_{x}=1.469 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 864 reflections
$\theta=2.7-21.2^{\circ}$
$\theta=2.7-21.2^{\circ}$
$\mu=0.47 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate, colorless
$0.26 \times 0.24 \times 0.16 \mathrm{~mm}$

## Data collection

Bruker SMART CCD area-detector
diffractometer
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
$T_{\text {min }}=0.825, T_{\text {max }}=0.927$
13516 measured reflections

> 3335 independent reflections
> 2148 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.057$
> $\theta_{\max }=25.0^{\circ}$
> $h=-9 \rightarrow 11$
> $k=-14 \rightarrow 14$

## Refinement

Refinement on $F^{2}$
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.110$
$S=1.07$
3335 reflections
245 parameters
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.084 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.36 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {max }}=-0.33$ e $\AA^{-3}$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

| S1-C1 | $1.754(4)$ | $\mathrm{N} 1-\mathrm{C} 1$ | $1.387(4)$ |
| :--- | :---: | :--- | :--- |
| $\mathrm{S} 1-\mathrm{C} 3$ | $1.811(3)$ | $\mathrm{N} 1-\mathrm{C} 6$ | $1.481(4)$ |
| $\mathrm{Cl} 1-\mathrm{C} 15$ | $1.737(4)$ | $\mathrm{N} 2-\mathrm{C} 5$ | $1.268(4)$ |
| $\mathrm{Cl} 2-\mathrm{C} 19$ | $1.726(4)$ | $\mathrm{N} 2-\mathrm{O} 3$ | $1.425(4)$ |
| $\mathrm{N} 1-\mathrm{C} 2$ | $1.360(5)$ | $\mathrm{O} 3-\mathrm{C} 3$ | $1.440(4)$ |
|  |  |  |  |
| $\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 3$ | $93.10(17)$ | $\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$ | $111.5(3)$ |
| $\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1$ | $116.5(3)$ | $\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$ | $113.2(3)$ |
| $\mathrm{C} 5-\mathrm{N} 2-\mathrm{O} 3$ | $109.0(3)$ | $\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 4$ | $105.2(3)$ |
| $\mathrm{N} 2-\mathrm{O} 3-\mathrm{C} 3$ | $110.5(2)$ | $\mathrm{C} 2-\mathrm{C} 3-\mathrm{S} 1$ | $105.6(2)$ |

H atoms were placed geometrically and refined with riding-model constraints.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Bruker, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

## References

Bozdag-Dundar, O., Dunder, B., Buyukbingol, E. \& Caira, M. R. (1999). Acta Cryst. C55, 1027-1029.
Bruker (1998). SADABS, SMART, SAINT and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Busetti, V., Valle, G., Zanotti, G. \& Galiazzo, G. (1980). Acta Cryst. B36, $894-$ 897.

Caramella, P. \& Grunanger, P. (1984). 1,3-Dipolar Cycloaddition Chemistry, Vol. 1, edited by A. Padwa, pp. 291-312. New York: Wiley.
Feng, Y. Q., Zhang, X. D., Zhang, W. H. \& Zhou, W. Y. (1997). Chin. J. Appl. Chem. 14, 5-9.
James, D., Kunze, H. B. \& Faulkner, D. (1991). J. Nat. Prod. 54, 1137-1140.
Kobayashi, J., Tsuda, M., Agemi, K. \& Vacelet, J. (1991). Tetrahedron, 47, 6617-6622.
Sutherland, H. H. \& Ali-Adib, Z. (1987). Acta Cryst. C43, 1406-1407.

